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Background: It has been known that Brain-Derived Neurotrophic Factor 

(BDNF) is involved in neural survival and long term memory (LTM). Here we 

hypothesized that BDNF as a potent neurotrophic factor might modulate 

amnestic effect induced by morphine.  

Objectives: The aim of this study was to examine whether infusion of 

exogenous BDNF in the CA1 regions of the dorsal hippocampi could ameliorate 

memory impairment induced by morphine. 

Materials and Methods: Forty rats were divided into 5 groups for dose 

response study of morphine (2.5, 5, 7.5 and 10 mg/kg morphine, and saline, 

intraperitoneal) on memory retention. For second part of the experiment 24 

animals were divided into three groups: (morphine +BDNF, morphine + saline 

and saline + saline). Two weeks after stereotaxic surgery, animals received 0.5 

μl bilateral infusion of either saline or BDNF (5 µg/rat) intrahippocampally, 30 

minutes before morphine treatment (7.5 mg/kg, i.p.). Step-through inhibitory 

avoidance task has been used to examine retrieval of memory formation, 1.5 

and 24 h after the training. 

Results: The results showed that systemic administration of 7.5 and 10 mg/kg 

morphine compared with saline immediately after the training impairs long-

term retention of memory for passive avoidance task in rats tested 24 hours 

later (p < 0.01). Surprisingly intra-CA1 microinjection of BDNF 30 minutes 

prior to injection of morphine significantly prevented amnesia (p < 0.001).  

Conclusions: These findings suggested that increase the level of BDNF in the 

CA1 region of the hippocampus during 30 minutes time window before 

morphine administration might modulate morphine-induced amnesia. 
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Introduction 
 

orphine has been widely used in 

pain treatment, but its strong 

dependency potential is a serious 

challenge to its clinical usage. It is reported 

that    opioid   peptides,   especially   morphine 

 

 
influence on the processes of learning and 

causes memory impairment. Impairment of 

memory has been reported after both chronic 

and acute morphine administration (1-4).  Pre- 

or post-training administration of morphine 
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impairs specifically performance in the 

passive avoidance task (3, 5). 

  Memory is critically depended on the 

hippocampus region, and can be divided into 

short-term and long-term forms (6, 7). 

Consolidation of short term (STM) to long-

term (LTM) memory takes place immediately 

following the training experience (8, 9). This 

critical period is influenced by different 

neurotransmitters including glutamate, 

acetylcholine and dopamine (10-13). 

Moreover, LTM strongly depends on protein 

synthesis cascades and neurotropic factors 

particularly BDNF (14-16). According to the 

previous reports hippocampal BDNF appears 

to be necessary for LTM formation in the 

different discrete periods, immediately after, 

1.4 hour and 3.6 hours after training (17, 18). 

Although many studies proposed that BDNF is 

a key molecule mediating persistence and 

maintenance LTM, it is still unclear whether 

BDNF pretreatment is capable of ameliorating 

memory impairment. This study was 

conducted to answer to this question. 

  

Materials and Methods 
 

Animals: 
 

  Sixty four male wistar rats weighing 200-

250g were used in this study. They had free 

access to food and water, and kept at 24 ± 2
◦
C 

under a 12h/12h light dark cycle. Each group 

consisted of 8 animals and each animal was 

tested once. All experiments were conducted 

in accordance with the Guide for Care and Use 

of Laboratory Animals (National Institute of 

Health Publication No.80-23, revised 1996) 

approved by the Research and Ethics 

Committee of Guilan University of Medical 

Sciences. 
 

Surgery:  
 

  The animals were anaesthetized via the 

intraperitoneal (i.p.) injection of ketamine and 

xylazine (100 and 10 mg/kg, respectively), 

and fixed in the flat –skull position using 

stereotaxic apparatus (David Kopf 

Instruments, USA).The rats' scalp were cut, a 

small craniotomy was drilled and cannulas 

(22-gauge diameter) were bilaterally 

implanted into the CA1 region of the 

hippocampus at coordinates: AP − 3mm, L ± 

2mm and V − 2.8mm (19).  
 

Micro infusions: 
 

  Morphine sulphate (Darupakhsh, Iran) and 

human recombinant BDNF (R&D, USA) were 

dissolved in sterile 0.9% saline. First, animals 

were divided into five groups (saline, 

morphine 2.5, 5, 7.5 and 10 mg/kg.) for dose 

response study of morphine. Secondly, 24 rats 

were divided into three experimental groups 

(morphine + BDNF, morphine + saline and 

saline + saline, n = 8 each) and underwent 

stereotaxic surgery. Two weeks later, animals 

received a 0.5 μl bilateral infusion of saline or 

BDNF (2.5µg/0.5μl/side) intra - 

hippocampally 30 minutes before morphine 

treatment (7.5 mg/kg, i.p.). 
 

 Inhibitory avoidance apparatus:  
 

  The apparatus consisted of two equal size of 

compartments, one light and one dark 

(20×20×30 cm high), connecting via a 

guillotine door (7×9 cm). The floor of the dark 

compartment was made of stainless steel rods 

(2.5 mm in diameter) with a distance of 1 cm. 

  For the acquisition trial, rat was placed in the 

light compartment and the door between the 

two compartments was opened 20 seconds 

later. When the rat entered the dark 

compartment, the door closed and an electric 

foot shock (1 mA, 50 Hz, 5 seconds) was 

delivered through the grid floor. For the 

retention trial, the rat was again placed in the 

light compartment 1.5 and 24 hours following 

the acquisition trial. The latency time 
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(seconds) for entering the dark compartment 

was recorded.  

  Upon completion of the inhibitory avoidance 

test, each rat was deeply anesthetized and 1 ml 

of a 4% methylene-blue solution was 

bilaterally infused through the cannula into the 

CA1 (0.5ml/side). The animals were 

decapitated and the brains were removed and 

placed in formaldehyde for two days (10%). 

Then, the brains were sliced and the injection 

site was verified according to the Paxinos 

&Watson, brain atlas 2005(19), (Figure1). 

 

 
 
Figure 1. Photomicrograph from rat brain section showing the 

extension of the area reached by infusions into the hippocampus. 

 

Data analysis: 
 

  Each value represents the mean ± standard 

error of the mean (S.E.M.). After assaying the 

normality of data with Kolmogorov - Smirnov 

test, comparison of data among groups was 

performed using one-way analysis of variance 

with Tukey’s post-test , when the p-values was 

< 0.05, the difference was considered to be 

significant. Calculations were performed using 

the SPSS statistical package version 19. 

 

Results 
 

  During the training trial, there was no 

significant difference among groups (p > 0.05, 

one way ANOVA). Systemic post-training 

administration of morphine (7.5 and 10 

mg/kg) immediately after the training 

significantly decreased latency to enter to the 

dark compartment compared to the control 

receiving saline (p < 0.01; Diagram 1).  

 

Diagram 1. The effect of post-training administration of morphine on 
step-through latency. The rats (n = 8 per group) received post-training 

saline (1 ml/kg, i.p.) or varying doses of morphine (mor) (2.5, 5, 7.5 

and 10 mg/kg, i.p.) and were tested after 1.5 h and 24 h. **p < 0.01 
compared with the saline. 

  Following infusion of BDNF or saline, a 30 

minutes wait-time and then an i.p. injection of 

morphine or saline, the rats performed the 

acquisition trial of the inhibitory avoidance 

test. Memory was assessed during the 

retention trial by measuring step-through 

latency in the passive avoidance task observed 

1.5 and 24 hours after the acquisition trial 

(Diagram 2).  

 
Diagram 2. The effect of acute BDNF pretreatment on memory 

consolidation prior to morphine injection. The latencies for the rat (n 

= 8 per group) to enter to the dark room 1.5 h and 24 h after the 

training were expressed as mean ± S.E.M. *p < 0.01 , ***p < 0.001 

compared to morphine. 

 

  There was a strong significant group effect 

(F(2, 21) = 37; p = 0.001, one way ANOVA) 

showing that the group receiving BDNF 30 

minutes prior to morphine administration 

(BDNF + morphine) took longer to enter the 

dark chamber compared to either control 

group, saline + morphine or saline + saline. 
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Discussion 
 

  In the current study, we showed that 

administration of morphine immediately after 

training impairs memory retention in the 

inhibitory avoidance test. Additionally, 

exogenous BDNF infusion into the 

hippocampal CA1 region, 30 minutes before 

morphine administration, ameliorated the 

morphine-induced memory impairment.  

  The impairment of memory induced by 

morphine is consistent with previous studies 

(3, 20, 21). Based on the immediate post-

training administration of morphine and its 

short half-life in the brain (approximately 1 

hour), it is likely that morphine is affecting the 

early phase of memory consolidation (22). 

Opioids produce their principal effects on 

memory by binding to at least three different 

types of receptors: μ, δ and κ opioid receptors 

(3). All opioid receptor subtypes inhibit 

adenylyl cyclase and Ca
2+

 channels and 

stimulate K
+
 channels. These effects are 

required for morphine-induced amnesia in the 

passive avoidance test (23). Alternately, 

neuropharmacological studies have revealed 

that activation of opioid receptors may 

decrease the function of the cholinergic 

system (24-26). However, one cannot exclude 

the possibility that morphine interferes with 

other neurotransmitter systems, such as 

adrenergic or dopaminergic, to induce amnesia 

(27, 28). 

  Interestingly, we also showed that infusion of 

BDNF into the dorsal hippocampus 30 

minutes before training was sufficient to 

prevent the amnestic effect of morphine as 

well as enhance memory consolidation 

compared to the saline control group. To our 

knowledge, this study was the first to 

demonstrate that BDNF attenuates morphine-

induced memory impairment.  

  Animal and human studies suggest that 

hippocampal BDNF plays a major role in  

memory by promoting neural plasticity (29, 

30). Additionally, BDNF is required for the 

consolidation of short-term and long-term 

memory, especially in glutamatergic and 

GABAergic synapses (29, 31-33). Previous 

studies report an increase in BDNF mRNA in 

the dentate gyrus of the hippocampus 

following the acquisition trial (17, 34). 

Conversely, Alonso et al. (2002) showed that 

infusion of an anti-BDNF antibody impaired 

LTM, when given 15 minutes before or 1 and 

4 hours after training (17). Our results were in 

agreement with the Johnston et al. study 

showing that injection of recombinant BDNF 

before training enhanced memory recall in day 

old chicks (35). Our findings confirmed that 

30 minutes before the induction of amnesia 

was a sensitive time window which was 

critical for LTM formation, so it is more likely 

to relate this result to acute effects of BDNF 

on synaptic transmission, rather than protein 

synthesis due to inadequate time. Binding of 

BDNF to tropomyosin receptor kinase B 

(TrkB) triggers a number of intra-cellular 

signalling pathways from long lasting effects 

to enhancing early long term potentiation 

(LTP) and phosphorylation of synaptic 

proteins (36-39). Rapid Ca
2+

 influx through 

NMDA-type glutamate receptors and 

subsequent protein phosphorylation events 

modify pre-existing synapses and trigger early 

LTP, an important mechanism mediating 

memory formation (40, 41). A recent 

surprising study revealed suppressive effect of 

BDNF as a negative modulator on morphine 

reward (42). Some of the neurotransmitters 

regulate BDNF synthesis, and in turn they are 

regulated by BDNF. For example BDNF 

modulates acetylcholine, dopamine, and 

glutamate release in the hippocampus, 

depolarizes neurons and interferes in Ca 

signaling (43-51). The significance of these 

reciprocal regulations was intriguing and 
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could represent a novel framework into the 

molecular basis of morphine–induced amnesia. 

  For future studies we propose administration 

of antibody against BDNF and also different 

doses of BDNF prior to morphine injection. 

 

Conclusion 
 

  The present study shows that morphine 

impairs the consolidation phase of long-term 

recognition memory, possibly by preventing a 

learning-induced increase in BDNF levels in 

the hippocampus. This study suggests that 

intra-hippocampal infusion of BDNF 

prevents the deficit in memory consolidation 

caused by morphine. 
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